UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Sec	ction	n A		•	
1	(a)	work done in bringing unit mass from infinity	(to the point)	B1	[1]
	(b)	gravitational <u>force</u> is (always) attractive either as r decreases, object/mass/body de	nes work	B1	
		or work is done by masses as they cor		B1	[2]
	(c)	either force on mass = mg (where g is the /grage $g = GM/r^2$ if $r \otimes h$, g is constant $\Delta E_P = \text{force} \times \text{distance moved}$ = mgh or $\Delta E_P = m\Delta \phi$ = $GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)n$	avitational field strength)	B1 B1 B1 M1 A0 (C1) (B1)	
		if $r_2 \approx r_1$, then $(r_2 - r_1) = h$ and $r_1 r_2 = r_1$ $g = GM/r^2$ $\Delta E_P = mgh$		(B1) (B1) (A0)	[4]
	(d)	$1/_{2}mv^{2} = m\Delta\phi$ $v^{2} = 2 \times GM/r$ $= (2 \times 4.3 \times 10^{13}) / (3.4 \times 10^{6})$ $v = 5.0 \times 10^{3} \text{ m s}^{-1}$ (Use of diameter instead of radius to give $v = 0$: 3.6 × 10 ³ m s ⁻¹ scores 2 marks)	C1 C1 A1	[3]
2	(a)	(i) either random motion or constant velocity until hits wall/o	other molecule	B1	[1]
		(ii) (total) volume of molecules is negligible compared to volume of containing vesse or radius/diameter of a molecule is negligible		M1 A1 (M1)	
		compared to the average intermolecular		(A1)	[2]
	(b)	either molecule has component of velocity or $c^2 = c_X^2 + c_Y^2 + c_Z^2$ random motion and averaging, so $< c_X^2 > 0$ so, $pV = \frac{1}{3}Nm < c^2 > 0$		M1 M1 A1 A0	[3]
	(c)	$< c^2 > \infty$ T or $c_{rms} \propto \sqrt{T}$ temperatures are 300 K and 373 K $c_{rms} = 580 \mathrm{m s^{-1}}$ (Do not allow any marks for use of temperature)	ure in units of ⁰C instead of K\	C1 C1 A1	[3]

GCE AS/A LEVEL - May/June 2012

Syllabus

9702

Paper

41

(Do not allow any marks for use of temperature in units of °C instead of K)

 (a) (numerically equal to) quantity of (thermal) energy required to change the state of unit mass of a substance without any change of temperature (Allow 1 mark for definition of specific latent heat of fusion/vaporisation) 	[2]

Syllabus

Paper

Mark Scheme: Teachers' version

4 (a)
$$a = (-)\omega^2 x$$
 and $\omega = 2\pi/T$ C1
 $T = 0.60 \text{ s}$ C1
 $a = (4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$ A1 [3]

(b) sinusoidal wave with all values positive all values positive, all peaks at
$$E_{\rm K}$$
 and energy = 0 at t = 0 B1 period = 0.30 s B1 [3]

(b) (i)
$$E = Q / 4\pi\epsilon_0 r^2$$
 C1
 $Q = 1.8 \times 10^4 \times 10^2 \times 4\pi \times 8.85 \times 10^{-12} \times (25 \times 10^{-2})^2$ M1
 $Q = 1.25 \times 10^{-5} \text{ C} = 12.5 \,\mu\text{C}$ A0 [2]

(ii)
$$V = Q / 4\pi\epsilon_0 r$$

= $(1.25 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 25 \times 10^{-2})$ C1
= $4.5 \times 10^5 V$ A1 [2]
(Do not allow use of $V = Er$ unless explained)

	Page 4		labus 702	Paper 41	
	(-) (!)		 		
6	(a) (i)		A1	[1]	
	(ii)	r.m.s. voltage (= $4.0/\sqrt{2}$) = 2.8 V	A1	[1]	
	(iii)	period $T = 20 \text{ ms}$ frequency = 1 / (20 × 10 ⁻³)	M1 M1		
		frequency = 50 Hz	A0		
	(b) (i)	change = $4.0 - 2.4 = 1.6 \text{ V}$	A1	[1]	
	(ii)		C1		
		$= 5.0 \times 10^{-6} \times 1.6 = 8.0 \times 10^{-6} C$	A1	[2]	
	(iii)	discharge time = 7 ms current = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$	C1 M1		
		$= 1.1(4) \times 10^{-3} A$	A0		
		erage p.d. = 3.2 V iistance = 3.2 / (1.1 × 10 ⁻³)	C1		
		= 2900Ω (allow 2800Ω)	A1	[2]	
7	(a) aka	atab: concentric circles (minimum of 2 circles)	M1		
′	(a) SNE	etch: concentric circles (minimum of 3 circles) separation increasing with distance from wire	A1		
		correct direction	B1	[3]	
	(b) (i)	arrow direction from wire B towards wire A	B1	[1]	
		either reference to Newton's third law			
	(,	or force on each wire proportional to product of the two curr			
		so forces are equal	A1	[2]	
	(c) force	ce <u>always</u> towards wire A/ <u>always</u> in same direction	B1		
		ries from zero (to a maximum value) (1) riation is sinusoidal / sin² (1)			
	(at)) twice frequency of current (1)	DΩ	[2]	
	(an	ny two, one each)	B2	[3]	
8	(a) pac	cket/quantum/discrete amount of energy	M1		
		electromagnetic radiation low 1 mark for 'packet of electromagnetic radiation')	A1		
		ergy = Planck constant × frequency (seen here or in b)	B1	[3]	
	41.5				
	` '	ch (coloured) line corresponds to one wavelength/frequency ergy = Planck constant × frequency	B1		
		olies specific energy change between energy levels discrete levels	B1 A0	[2]	
	55 (2.23.212.10.010	7.0	[-]	

	Pa	ge 5	5	Mark Scheme: Teachers' version	Syllabus	Pape	er
				GCE AS/A LEVEL – May/June 2012	9702	41	
9	(a)	(i)	eithe or	probability of decay (of a nucleus) per unit time $\lambda = (-)(dN/dt) / N$ $(-)dN/dt \text{ and } N \text{ explained}$		M1 A1 (M1) (A1)	[2]
		(ii)	½ = In (½	ne $t_{1/2}$, number of nuclei changes from N_0 to $1/2N_0$ exp $(-\lambda t_{1/2})$ or $2 = \exp(\lambda t_{1/2})$ or $2 = \exp(\lambda t_{1/2})$ or $2 = \lambda t_{1/2}$ and $2 = \lambda t_{1/2}$	In 2 = 0.693	B1 B1 B1 A0	[3]
	(b)	λ =	0.107	8 exp(–8λ) 7 (hours ^{–1}) nours <i>(do not allow 3 or more SF)</i>		C1 C1 A1	[3]
	(c)	bad dau	ckgrou ughter	om nature of decay und radiation product is radioactive sensible suggestions, 1 each)		B2	[2]

Sec	ction	в			
10	(a)	ligh	t-dependent resistor (allow LDR)	B1	[1]
	(b)	(i)	two resistors in series between +5 V line and earth midpoint connected to inverting input of op-amp	M1 A1	[2]
		(ii)	relay coil between diode and earth switch between lamp and earth	M1 A1	[2]
	(c)	(i)	switch on/off mains supply using a low voltage/current output (allow 'isolates circuit from mains supply')	B1	[1]
		(ii)	relay will switch on for one polarity of output (voltage) switches on when output (voltage) is negative	C1 A1	[2]
11	(a)	(i)	e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations	M1 A1	[2]
		(ii)	$\begin{array}{ll} \textit{either} & \text{wavelength shorter/shortest for greater/greatest acceleration} \\ \textit{or} & \lambda_{\min} = \textit{hc/E}_{\max} \\ \textit{or} & \text{minimum wavelength for maximum energy} \\ \textit{all electron energy given up in one collision/converted to single photon} \end{array}$	B1 B1	[2]
	(b)	(i)	hardness measures the penetration of the beam greater hardness, greater penetration	C1 A1	[2]
		(ii)	controlled by changing the anode voltage higher anode voltage, greater penetration/hardness	C1 A1	[2]
	(c)	(i)	long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body	B1	[1]
		(ii)	(aluminium) filter/metal foil placed in the X-ray beam	B1	[1]
12	(a)	stro <i>eith</i>	ong uniform (magnetic) field ner aligns nuclei	M1	
		or	gives rise to Larmor/resonant frequency <u>in r.f. region</u> n-uniform (magnetic) field	A1 M1	
		or	changes the Larmor/resonant frequency	A1	[4]
	(b)	(i)	difference in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-5} \text{ T}$	A1	[1]
		(ii)	$\Delta f = 2 \times c \times \Delta B$ = 2 × 1.34 × 10 ⁸ × 6.0 × 10 ⁻⁵	C1	
			$= 1.6 \times 10^4 \text{Hz}$	A1	[2]

GCE AS/A LEVEL - May/June 2012

Syllabus

9702

Paper

41

	Pa	ge 7 Mark Scheme: Teachers' version		Syllabus		Paper	
		GCE AS/A LEVEL – May/June 2012 9702			41		
13	(a)	(i)	no interference (between signals) <u>near boundaries</u> (of	cells)	B1	[1]	
		(ii)	for large area, signal strength would have to be greated be hazardous to health	r and this could	B1	[1]	
	(b)	com	oile phone is sending out an (identifying) signal aputer/cellular exchange continuously selects cell/base	station	M1		
			strongest signal puter/cellular exchange allocates (carrier) frequency (a	nd elot)	A1 A1	[3]	